
Poster: Visualizing Swift Projects as Cities
Rafael Nunes, Marcel Rebouças, Francisco Soares-Neto, Fernando Castor

Center of Informatics
Federal University of Pernambuco

Recife, Brasil
{rngs,mscr,fmssn,castor}@cin.ufpe.br

Abstract—Human’s natural ability to perform software main-
tenance is compromised as a project gets bigger, older, and more
complex. Software visualization tools can be used to mitigate
this problem, easing software understanding. However, no such
tools are available for Swift, a new programming language that
is experiencing widespread adoption by developers. In this paper
we present SwiftCity, a software visualization tool that uses the
City Metaphor. Visualizing Swift projects as cities is different
from projects in other languages, such as Java and Javascript.
Swift employs a number of different units of modularity that are
not available in these languages, such as extensions and structs.

I. INTRODUCTION

Software development is often a complex activity that
involves the coordination of teams, clients’ requirements and
limitations of infrastructure, time and human resources. As
a project ages and gets more complex, it becomes harder to
understand, manage, and identify system behavior by looking
just at its source code. To mitigate this problem, data visu-
alization can be utilized. In the context of systems, tools can
provide a visual representation of the code used to support de-
velopment, maintenance, inspection, and debugging phases[1].
Many approaches of visualization were already proposed, both
in 2D [2][3] and 3D [4]. By having an extra dimension, 3D
visualizations allows the display of more information, but also
bring different problems such as navigation, occlusion, and
comparison of elements, among others.

Wettel and Lanza[4] proposed the city metaphor, where
code elements are mapped and visualized in the context of
neighborhoods and buildings. The metaphor has already been
experimentally analyzed, with positive results [5]. Also, there
are already implementations of the metaphor for JavaScript [6]
and for the analysis of Java concurrency [7].

This paper presents SwiftCity, a realization of the city
metaphor for Swift. Since its release, Swift’s increasing adop-
tion already puts it as one of the most popular programming
languages1. Swift is also bound to be further adopted, as it is
being developed to replace Objective-C in Apple’s ecosystem.
Notwithstanding, to the best of our knowledge, there are
currently no visualization tools targeting Swift. Furthermore,
it is not possible to directly apply other realizations of the city
metaphor to Swift because the language employs a number of
different units of modularity that are not available in these
languages, such as extensions and structs.

1December 2016 - http://www.tiobe.com/tiobe-index/

Fig. 1: City of the CVCalendar Project

II. SWIFTCITY

Swift. Swift is a modern, multiparadigm language that com-
bines imperative, object-oriented, protocol-oriented, and func-
tional programming. It contains most elements that are well-
known in object-oriented languages, such as classes, structs,
protocols (which are similar to Java’s interfaces), and enums.

Less known, Swift also contains extensions, which are
elements that add new functionality to an existing class,
structure, enumeration, or protocol type. This element even
enables the extension of types in situations where the original
source code is not available, such as adding new methods to
String or Int, or making an existing type conform to a protocol.
Extensions are not unlike inter-type declarations from aspect-
oriented programming languages [8]
Visual Aspects. A block is the fundamental element of
the metaphor, representing a city building. In the original
metaphor, a block was mapped to represent a class of the
system. However, Swift has several elements that must be
represented that were not available in Java or Javascript (e.g.,
structs and extensions). We decided to differentiate the types
of elements by using different colors for each kind since,
according to Zanolie [9], forms are usually associated with the
representation of elements of different nature, yet all elements
are Swift types that belong to different categories. Moreover,
the use of different forms would go against the metaphor,
translating the elements into objects that do not necessarily
create the immersion of a city.

Several metrics can be applied in order to define the
measurements of a block. For this work, the block height



is given the number of lines of code of the element, while
the width and length are defined by the number of methods.
These metrics are usually used in analysis tools [10]. We chose
to differ from the original metrics, which used the number
of methods as height and number of attributes as width and
length. We believe number of LOC is a more general, albeit
imperfect, approach to represent the complexity of an element,
since not every element has methods and enumerations, in
particular, have cases which are neither methods nor fields,
but can still be captured by LOC.

The city topology is usually mapped to elements of the
system hierarchy. Since there are no packages, namespaces
or anything equivalent in Swift, the mapping limits itself to
two clear levels: the project and the files. The lowest layer
represents the city limits as being the whole project (dark
gray), and each element of the second layer represents a
district, which translates to a file within the project (light gray).

Another challenge was how to represent the relations be-
tween extensions and other elements. Two approaches were
considered satisfactory: (i) adding another layer that would
contain the element and its extensions, and (ii) stacking
extensions to the element, so they would become a single
building. There are, however, advantages and disadvantages
of each. The first, for example, allows a cleaner view as the
city elements are more spread. On the other hand, the second
better translates the complexity of the elements.
Technical Aspects. From the collection of data to its visual-
ization, three tools had to be implemented. Firstly, we modified
the Swift compiler in order to get the contents of its -dump-ast
flag. This flag is responsible for printing an AST representation
of each source-code file. This representation, however, was
irregular, not being originally meant by Swift’s developers to
be machine-parseable, so it had to be modified. The result is
a custom compiler and toolchain that we used integrated into
Xcode. Secondly, we implemented a parser that could translate
the AST representation to the metadata that we wanted to
visualize, such as information about classes and extensions.
Lastly, we implemented SwiftCity2, a client-based web tool
meant to consume the produced metadata and dynamically
present its visualization through the city metaphor. More
information about the tools and their repositories can be found
at their website3.

III. CASE STUDY

In this section, we present an analysis of the visualizations
of two popular Swift projects selected from GitHub. Their
cities are shown in Figure 2.
Alamofire. Alamofire is an API for HTTP network written
in Swift. While the project seems to utilize extensions as a
pattern, some really big classes are present in the city. There
are also two strangely large blue towers (enums). Although
enumerations may contain instances of pre-computed methods
and properties, it is difficult to see such an implementation

2https://swiftcity.github.io/web-app
3https://swiftcity.github.io/website/

Fig. 2: Cities of Alamofire and RxSwift

with about 200 LOC. Therefore, it may be interesting to
analyze why such enums have grown so large.
RxSwift. RxSwift is an implementation of reactive program-
ming for Swift. It uses extensions in a different way from
Alamofire, since there are few occurrences that extend classes.
There are also more extensions to native types of Swift, shown
as the ungrouped yellow blocks in the city. More interestingly,
however, is that the ObservableType protocol has 53
extensions to its definition. We also noticed that structs are
not used so much in comparison to classes, differently from
the Alamofire project, which can be a practice imposed by the
developers or a provisional decision.

We can identify some patterns from the analyzed projects:

• Yellow buildings throughout the city: Extensions are
widely used in projects, for decoupling and modularity.
However, some extensions are even more complex than
extended element.

• Variety in the colors of the blocks: The system’s design
seems to make use of all the of the standard elements
provided by Swift.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we presented SwiftCity, a tool to visualize
Swift projects as cities. Contributions include a mapping
for elements of the language to the city metaphor and a
useful application. Our next steps include improvements to the
tool, the visualization, and the completeness of the translated
metaphor.



REFERENCES

[1] D. E. Fyock, “Using visualization to maintain large computer systems,”
IEEE Computer Graphics and Applications, vol. 17, no. undefined, pp.
73–75, 1997.

[2] M. Wilhelm and S. Diehl, “Dependencyviewer - a tool for visualizing
package design quality metrics,” in In VISSOFT, 2005.

[3] M. Lanza and S. Ducasse, “The class blueprint: Visually supporting the
understanding of classes,” IEEE Transactions on Software Engineering,
vol. 31, no. undefined, pp. 75–90, 2005.

[4] R. Wettel and M. Lanza, “Visualizing software systems as cities,” ser.
VISSOFT 2007, 2007, pp. 92–99.

[5] R. Wettel, M. Lanza, and R. Robbes, “Software systems as
cities: A controlled experiment,” in Proceedings of the 33rd
International Conference on Software Engineering, ser. ICSE ’11.
New York, NY, USA: ACM, 2011, pp. 551–560. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1985868

[6] M. Viana, E. Moraes, G. Barbosa, A. Hora, and M. T. Valente,
“JSCity: Visualizao de sistemas JavaScript em 3D,” in III Workshop
de Visualização, Evolução e Manutenção de Software (VEM), 2015, pp.
73–80.

[7] J. Waller, C. Wulf, F. Fittkau, P. Dohring, and W. Hasselbring, “Syn-
chrovis: 3d visualization of monitoring traces in the city metaphor
for analyzing concurrency,” 2013 First IEEE Working Conference on
Software Visualization (VISSOFT), vol. 00, no. undefined, pp. 1–4, 2013.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Lo-
ingtier, and J. Irwin, “Aspect-oriented programming,” in Proceedings of
the 11th European Conference on Object-Oriented Programming, June
1997, pp. 220–242.

[9] K. Zanolie, S. Teng, S. E. Donohue, A. C. van Duijvenvoorde,
G. P. Band, S. A. Rombouts, and E. A. Crone, “Switching
between colors and shapes on the basis of positive and negative
feedback: An fmri and {EEG} study on feedback-based learning,”
Cortex, vol. 44, no. 5, pp. 537 – 547, 2008, special Issue
on Selection, preparation, and monitoring: Current approaches to
studying the neural control of action. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0010945207001177

[10] R. Lincke, J. Lundberg, and W. Löwe, “Comparing software
metrics tools,” in Proceedings of the 2008 International Symposium
on Software Testing and Analysis, ser. ISSTA ’08. New York,
NY, USA: ACM, 2008, pp. 131–142. [Online]. Available: http:
//doi.acm.org/10.1145/1390630.1390648

http://doi.acm.org/10.1145/1985793.1985868
http://www.sciencedirect.com/science/article/pii/S0010945207001177
http://www.sciencedirect.com/science/article/pii/S0010945207001177
http://doi.acm.org/10.1145/1390630.1390648
http://doi.acm.org/10.1145/1390630.1390648

